
2 Euclid’s Elements, Axioms, and Rigor

2.1 Proofs with logical gaps

In the previous section I gave several examples of geometric proofs. Important to understand that in
each of these examples I had to use something, which I assumed to be true (be it the fact that the
sum of the angles of a triangle is equal to π, or the comparison conditions for the triangle equality,
or basic properties of natural numbers, etc). It should be clear that all these “true facts” also require
to be proved, and so on. If one attempts to prove everything sooner or later some kind of circular
argument will be involved, which will deem the whole logical sequence of proofs unreliable. Here is
one (relatively obvious) example of incorrect reasoning. Warning: while the statement of the following
theorem is correct, the proof itself is not correct, and I invite the reader to identify the wrong steps.

Theorem 2.1 (Steiner–Lehmus). A triangle with two equal angle bisects is isosceles.

Proof. I start with the drawing. In △ABC it is given that the angle bisect AA1 is equal to the angle

Figure 1: The drawing for Theorem 2.1.

bisect CC1, therefore the triangles AA1C and AC1C are congruent by the side–angle–side comparison
(two sides are equal by the given condition, one side is common, and the angles are the halves of the
base angles). Therefore,

AC1 = CA1.

Next, in△ABA1 and△CC1B ∠AA1B = ∠CC1B since the other two angles are equal. Therefore these
triangles are congruent by the angle–side–angle comparison (sides AA1 and CC1 are used respectively),
and hence

C1B = A1B.

Summing two equalities together I get

AB = AC1 + C1B = CA1 +A1B = BC

as required. �
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So, where is the incorrect step? I tried to hide it as good as I could, but it is hopefully clear that
right in the second line of my proof I acidly assumed that the angles at the base are equal although it
does not directly follow from the given conditions. Since we know that triangle is isosceles if and only
if the angles at the base are equal, I pretty much assumed that my triangle is isosceles and proved
that it is isosceles, hardly a very surprising fact given my logical development (A ⇒ A is always true,
no matter what the truth of the statement A).

Hence the conclusion: we must stop somewhere and assume some of the facts as true without
proving them. Such fact are called axioms in mathematics. It was the greatest achievement of Euclid
that he was able to come up a relatively short list of definitions, axioms, and common notions, which
allowed him to put the whole body of mathematical knowledge on a sturdy foundation. I am not
going to discuss the development of Elements in these notes, and instead refer the reader to the online
version at http://aleph0.clarku.edu/~djoyce/java/elements/bookI/bookI.html where not only
the English translation of Euclid’s Elements is given, but also everything is given a thorough discussion
from the point of view of modern standards of mathematical rigor.

One Euclid’s axiom (namely, the fifth postulate) was especially important for the future develop-
ment of the axiomatic method, which is discussed at length in the textbook. Euclid himself used his
fifth postulate for the first time only in Proposition 29. In Proposition 32 it is proved (again, using
the fifth postulate) that the sum of angles in any triangle sums to two right angles (i.e., to π radians).
Do we have to use the fifth postulate? Not really, here is an example.

Theorem 2.2. In any triangle the sum of the angles is equal to π.

Proof. I start with an arbitrary triangle ABC and construct two triangles inside it by picking an
arbitrary point on AC and connecting it with B (see Fig. 2). Let x be the angle measure of all the

Figure 2: The drawing for Theorem 2.2.

angles in a triangle. I clearly have

∠1 + ∠2 + ∠6 = x,

∠3 + ∠4 + ∠5 = x,

∠1 + ∠2 + ∠3 + ∠4 = x,

or
x+ ∠5 + ∠6 = 2x.

Since angles 5 and 6 are adjacent, their sum is π, and hence

x = π

as stated. �
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So, is it possible to actually prove the sum of the angles of any triangle is π without the fifth
postulate? The correct answer is “yes, if we replace it with an equivalent statement.” Sometimes
these equivalent statements are so much disquiet that it is difficult to see even for a trained eye.
In this example, however, it is quite straightforward to recognize that the equivalent statement that
was used is the fact that “all the triangles have the same angle measure,” which can be shown to
be equivalent to the fifth postulate (that it, the fifth postulate can be proved if one assumes this
statement as true).

Finally, as it is discussed in the textbook (and even better through the link I have given above),
the axiomatic system by Euclid and his proofs have a lot of shortcomings according to the modern
mathematical standards. I will not discuss those issues here. Instead I opt to give you a proof, which
is as rigorous as many proofs by Euclid, but clearly is incorrect. I will leave it to the student to figure
out where I hide my mistake.

But before I start with the next “theorem,” I would like to point out one very basic fact that
will be used multiple times below. Namely, if I have a segment with two end points and if I build
a perpendicular bisect to this segment then any point on this perpendicular is equidistant from the
end points (see Fig. 3). The proof is immediate: find two triangles in this figure and note that by
construction I have the side–angle–side comparison, and therefore these two triangles are congruent
and therefore the sides that correspond to the distance from the point on the perpendicular to the
end points are equal.

Figure 3: The distances from any point on the perpendicular bisect to the end points of the given
segment are equal.

Now I am ready to state and prove (Warning: this is not a true theorem!)

Theorem 2.3.
1 = 0

Given: A quadrilateral ABCD such that ∠ABC = 91◦, ∠BCD = 90◦, AB = CD.
Prove: ∠ABC = ∠BCD, and hence 1 = 0.

Proof. To prove the theorem, I build two perpendicular bisects of the sides BC and AD and denote the
point of their intersection as O (Fig. 4, left panel). I have that BO = OC (property of perpendicular
bisects), AO = OD (the same reason), AB = CD (by assumption). Hence △ABO = △CDO, and
hence

∠ABO = ∠OCD.

Since △BCO isosceles (perpendicular bisects!),

∠OBC = ∠BCO.

3



Since ∠ABC = ∠ABO+∠OBC and ∠BCD = ∠OCD+∠BCO, the required conclusion follows:

∠ABC = ∠BCD.

Ok, stop for a second, this cannot be true. Probably my drawing is not correct. What else is
possible? Maybe the perpendicular bisects intersect exactly on the side AD (Fig. 4, right panel).
Now I have, however, AO = OD by construction, AB = CD by the initial conditions, BO = CO by
the properties of the perpendicular bisect, and hence ∠ABO = ∠OCD, ∠OBC = ∠BCO as the base
angles in an isosceles triangle, and therefore the same conclusion follows:

∠ABC = ∠BCD.

Figure 4: Drawings for the first two cases in Theorem 2.3.

Wait, these are certainly not all the possible cases. Indeed, I can assume that my perpendicular
bisects intersect as in Fig. 5, left panel. Ant yet here, for exactly the same reasons, I can conclude
that △ABO = △OCD, and hence ∠ABO = ∠OCD. Moreover, again, ∠OBC = ∠OCB as the base
angles in isosceles triangle, and since ∠ABC = ∠ABO−∠OBC and ∠BCD = ∠OCD−∠OCB, the
same conclusion follows:

∠ABC = ∠BCD.

What else is possible? Maybe these two perpendicular bisects intersect below AD? I leave it as
an exercise to check that very similar arguments lead to the same conclusion.

Ok, maybe these bisects do not intersect at all (Fig. 5, right panel)? In this case I must conclude
that BC and AD are parallel, and hence ABCD is either trapeze or parallelogram. If it is a trapeze
the fact that AB = CD immediately implies that ∠ABC = ∠BCD (think this out), and if it is a
parallelogram, the sum of the angles at the same side must be 180◦, or, in other words, I end up with
the same equality

1 = 0.

�

2.2 Spherical geometry as the simplest non-euclidian geometry

2.3 Further reading
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Figure 5: Drawings for the next two cases in Theorem 2.3.
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